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Abstract 

Parallel Simulation has presented the possibility of 
performing higk speed simulation. However, when 
attempting to make a link between the requirenzents of 
Parallel Simulation and Discrete Event Simulation wed 
in commercial areas such as manufacturing a major 
problem a r k s .  This lies in the decomposition of the 
simulation into a series of concurrently executing 
objects. 
Using the activity cycle diagram simulation technique 
as an illustrative example, thk paper suggests a 
solution to thk decomposition problem. This tk 
dkcussed within the context ofprovidhg a conceptually 
seamless merhalologv fortmnskatingsimulatwn models 
into a form which can exploit the benefits of parallel 
computing. 

1: Introduction 

The goal of executing a simulation on a parallel 
computer is to decrease the time taken for results to be 
obtained from the simulation. The motivation for this 
is the acquisition of data from which meaningful 
information can be generated for use in the decision 
making process, such as scheduling decisions in a 
factory. Io cases where the model is large and 
complex, paallel processing techniques may be the 
only means by which this information can be generated 
faster than real time. 
The field of researdl dedicated to the development of 

simulations which efficiently exploit the processing 
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power of parallel computers is called pamllel 
simulation 111. However, this researdl does not 
address the correct translation of the model to be 
simulated into a form which can be executed using 
parellel simulation techniques. This is seen as a aitical 
omission from parallel simulation methodology as there 
is no way of validating the relationship between model 
and implementation. To facilitate this validation 
process, the paper desaibes an intermediary stage 
which separates the implementation of the model from 
optimisatian issues. This is the focus of work 
performed by other researchers at the centre for 
Parallel Computing [2]. 

2: Parallel simulation 

A discrete event model consists of a state, which 
changes over time, and events, which describe how this 
state can change. Io a simulation program, the model 
state become a data structure, and events become 
procalm called event routines. Alternatively, events 
can be combined to become activities ar processes 
depending on the conceptual framework selected 131. 
Combining this with an event list, to schedule future 
state changes, and a simulation clack allows an 
algarithm called the simulation executive to simulate 
the model's progress through time [41. 
To translate this seemingly monolithic structure into a 

form which can potentially exploit the multiple 
p r o "  of a paallel computer, requires that the 
above be decomposed into a series of computational 
objects which communicate via message passing [ll. 
Take the example of a queuing netwoolc. Such a 

network contains nodes, consisting of a queue and a 
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server, which are capable of sending jobs to, and 
receiving messages from, other nodes in the network. 
The generation of the objects required for parallel 
simulation is simple; ea& node of the model becomes 
an object. When a node receives a job, event routines 
model the service of the job and its subsequent arrival 
at another node by calculating the length of time this 
takes and scheduling events on the event list. 
In this object based scheme, however, global 

structures such as the event list are not pennitted. To 
pennit each object to simulate the node that it 
represents, each object must contain its own clock, 
event list and simulation executive. Each object also 
contains its own state and the event routines required 
to simulate the object’s state changes. To schedule the 
occu~wlce of an event at another object, an object 
sends a timestamped event message to the affected 
object. The arrival of a job at a node is therefore 
simulated in this parallel scheme by the corresponding 
objects sending and receiving a timestamped event 
message. 
The timestamp of an event message allows a receiving 

object to process the event in the comect order. In a 
parallel computer it is entirely possible that these 
messages may arrive out of sequence. In the 
development of a protocol to cowectly implement a 
discrete event model, the local causality constraint 
(LCC) allows the assumption to be made that all 
timestamped messages sent to an object arrive in the 
correct order. When it has been shown that the objects 
of the parallel simulation conspire to produce the same 
results as that of the sequential simulation, a causality 
maintenance protocol (CMP) is added to fulfil the role 
of the LCC. In parallel simulation there are two 
classes of C M P  conservative [5] and optimistic [61. 
This separation of coding facilitates the development 

and validation of parallel simulations by focusing on 
the actual simulation performed by each object rather 
than a mechanism to order messages arriving at an 
object. 

3: Model development 

In discrete event simulation the queuing network model 
is one of the most simple modelling techniques. To 
demonstrate the need for a methodology within the 
context of an existing modelling technique, Activity 
Cycle DEhgrams (ACD) [7,8], used extensively in the 
simulation of manufacturing systems, was selected. 
Briefly, the physical entities of a system, its jobs, 
machines, etc., are perceived to pass through an 
alternating series of active states and idle states. Idle 
states are represented as queues, active states as 
activities. Entities participate in activities and wait in 
queues. For example, a machine and job participate in 
an activity called process, but wait for the activity to 
begin in queues JQ1 and OQ respectively. An example 
of an ACD model is shown in figure 1. 
In the model there are three entity classes job, 

operator and machine. As illustrated in figure 1, a job 
arrives, waits for an operator and machine to become 
available to process it and then goes on for inspection. 
At inspection there is a chance that the processed job 
has some defect that requires that the job must be 
reprocessed. If this is the case, the job is passed back 
for processing, otherwise the job leaves the shop. 
Each time a machine is used, there is a chance that the 

machine might breakdown. If this occuls the machine 
undergoes repair and, once the task of repairing is 
finished, is returned for use. Machines are checked 
whenever one is required for processing. 
To generate a simulation program from such a model, 

the implementor is guided by a set of rules defined by 
a conceptual framework [3]. In so called traditional 
simulation, there exists three frameworks; event 
oriented, activity oriented and process oriented. The 
choice of implementation framework is very much 
dependent on the modelling technique used and the 
model itself. ACD simulations can be generated 
according to any of the three. For purposes of this 
paper, the event orientation will be used. 
The behaviourial logic of the model in the event 

orientation is decomposed into a collection of event 
classes. These fonn procedure blocks called event 

537 

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore.  Restrictions apply.



IC-J L------ 

',I 
: I  
: I  
: I  

: I  
J 

&Y 
Job 

Operator 

Machine 

Figure 1 Example ACD Model 

QY 
Event Message - 
Q R U P ~ ~ ~ C K O ~  o o 

Figure 2 Event Oriented P a d e l  Simulation 
Structure of ACD Model 

538 

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore.  Restrictions apply.



routines and gives this orientation locality of time [91. 
The simulation executive used to advance the model 
through time is called the event scheduling executive 
and is shown in table 1. An example of an event 
routine generated from the job shop model is shown in 
table 2. Note that the ordering of conditional events is 
due to prioritking of activities specified in the model 
(ie. REPR, INSP then PROC). 

WHILE NOT tenninated DO 
FIND next event and advance simulation time 
to next event time 
EXECUTE next event 

ENDWHILE 
Table 1: Event scheduling executive 

endgroc: ADD job TO JQ2; 
ADD operator to OQ; 
ADD machine to MQ; 
st-repr; 
st-insp; 
s t9sg.  

Table 2: Example event routine (endgroc) 

Given the bounds of the event orientation, the aim of 
this methodology is therefore to generate the objects of 
a parallel simulation of the model which is consistent 
with the event orientation. 

4: Model decomposition 

The event orientation demands the translation of the 
ACD model in terms of bound events, events which are 
time dependent, and conditional events, events which 
are dependent on a set of state conditions. Analysis of 
the ACD model defines their corresponding event 
routines. 
Observing the LCC allows the CMP aspects of the 

simulation to be ignored, thus making it possible to 
focus on model decomposition issues. A suitable basis 
for the objects used by parallel simulation is now 

To remain consistent with the strong queuing structure 
RXpked. 

of the ACD model and to avoid additional overhead, 
the queues of the ACD model form the objects of the 
event oriented parallel simulation. This is also 

important in maintaining a strong relationship between 
model and implementation. Note that in an activity 
oriented simulation, the activities also form objects as 
well as queues due to the different requirements of that 
conceptual framework. 
For each object, assuming that incoming messages are 

placed on an event list, the algorithm of table 1 
provides the basis for correct event execution. 
Translating event interaction into message passing 
framework is more complex due to the existance of 
events which affect several objects. The effect of this 
distributed affect is now discussed for each type of 
event. 

4.1: Bound events 

A bound event, any event with a time dependent 
element, in a parallel simulation is scheduled by 
the transmission of a timestamped event message 
from one object ta another. In this structure a 
bound event represents the movement of entities 
from one queue to another. Bound events are 
timestamped messages sent between objects and 
contain a reference to the event that they represent 
and any entities that are to be transferred. Each 
object will contain the corresponding event routine 
so that when an event message arrives, the event 
can be correctly simulated. 

Consider the bound event endgroc which affects 
the queues 542, 00 and MQ. When a member 
of this event class is executed, the entities of the 
three classes are added to queues JQ2, OQ and 
MQ respectively. The arrival of a job in JQ2 
requires that the inspection activity begins. 
Similarly, the availability of the operator and 
machine entities allows the possibility of another 
job to be processed. In the parallel simulation, the 
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effects of the single endgroc event are felt over 
several objects. This gives rise to endgroc being 
known as a dkfribufed bound event (DBE) . 
A DBE is implemented by decomposing it into 

events local to an object, several localised bound 
events (LBE), one for each entity class affected by 
the DBE. A DBE therefore becomes several 
LBEs which are sent to each object that represents 
the next queue in the corresponding activity cycle. 
In its conversion into LBEs, n LBEs will be 
therefore generated. 
Consider the derivation of the distributed event 

routine. The original event routine for endgroc 
resulted in the conditional events sf-repr, st-insp 
and stp-oc being attempted in an order dictated 
by the ACD model. The order in which sf-rqr 
and st-insp are attempted will not effect the 
validity of the simulation as long at the duration 
of the activity INSP is greater than zero. 
In the parallel simulation the ordering of the 

conditional event execution also has to be 
enforced. Based on analysis of the scope of the 
conditional event (ie. the queue states required for 
the event to be tested) these events can be 
distributed across the localised elements of the 
DBE. These elements are shown in table 3. 

endgroc at JQ1: 

e n d y o c  at OQ: 

endyroc at MQ: 

Table 3: Localised 

ADD job TO 542; 
st-insp. 

ADD operator TO OQ; 
stqroc. 

ADD machine TO MQ; 
st-repr; 
stqroc. 

elements of distributed 
bound event ( d y r o c )  

4.2: Conditional events 

Conditional events in the parallel simulation 
generate the event messages which are sent and 
received by each object. Distribution also 
presents a problem to these events. Consider 
stgroc. This event occurs whenever a state 
change in the simulation makes it possible for the 
activity PROC to begin and is dependent on the 
states of the queues JQ1, OQ and MQ. It is clear 
from the ACD model that this event will occur as 
a consequence of the bound events j - m .  
end-repr or endgroc. If the execution of this 
event is successful, then the event endgroc will 
be scheduled. 
As it is possible for stgroc to be instigated by 

the arrival of a job, operator or machine in the 
queues JQ1, OQ and MQ respectively, a parallel 
implementation must enable the conditional event 
to be instigated from any of these queues. This 
gives rise to such an event being termed a 
dktributed conditional event (DCE). As with 
bound events, a conditional event concerning only 
a single queue, is termed a localked conditional 
event (LCE). A DCE is identified by a test 
involving several entity classes while a LCE is 
identified a test on a single entity class. 
The implementation of a DCE is more 

complicated than a DBE as there is no supporting 
communication mechanism. Consider the 
execution of the DBE endyroc at JQ1. Thii 
causes job to be added to the state JQ1 and the 
event s f y o c  to be executed. The conditional test 
of stgroc requires the combined states of JQ1, 
OQ and MQ. This is further complicated when 
the ACD model is referenced; activity priority 
dictates that REPR must be attempted before 
PROC. 
To make the conditional test, a mechanism must 

be provided to allow an object instigating the 
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DCE to determine whether or not the event can 
occur. To do this a protocol must be set up 
between the objects taking part in the test. This 
is a three stage message exchange and is referred 
to as the query-reply-update (QRU) protocol. 
In the QRU protocol, an object instigating a DCE 

sends timestamped query messages to other objects 
referenced in the conditional test of the DCE. 
The timestamp of the query message allows these 
objects to synchronise to the correct point in time 
at which the DCE can be executed correctly. 
a n  synchronisation, the receiving object can 
perform one of two actions. It can either return 
details of its current state or, if such exist, execute 
other conditional events and then return details of 
its current state. This allows the correct ordering 
of events. 
State information is returned in the form of a 

rep& message. The instigating object will then be 
able to carry out the conditional test of the DCE. 
It is assumed that the instigating object will have 
information regarding the queue disciplines of 
participating queues. This information can form 
either part of the reply message or be a permanent 
part of the instigating object. 
Once the DCE has been evaluated, the instigating 

object will have zero or more sets of entities have 
begun an activity and a set of times at which they 
are due to end the activity; the instigating object 
can now schedule the corresponding bound events. 
It follows that the bound event marking the end of 
this cooperation will be a DBE. 
To remain homogenous, the instigating object 

only schedules the DBE component for its own 
entity class. The other participating objects are 
responsible for scheduling their own DBE 
component. An uphte  message is therefore 
returned to the cooperating objects so that they 
may update their local state (remove entities now 
engaged in the activity) and send their own DBE 

components. 
These messages are in the form 

query(Event, Source-queue, Destination-queue, 
Time) 
rep ly (Source -q u e u e , Dest inat ion -q u e u e ,  
Current-state) 
update(Source-queue, Destination-queue, 
Update-set) 
Where Current-state is the current state of a queue at 

a given timestamp T and is in the same form 
as Entity-set, 
Update-set is a set of information from which 
a queue’s state can be updated and event 
messages sent. 

Note that regardless of where DBE messages 
originate, a message of this kind is required so that 
participating objects can update their local states. The 
homogeneity of this approach retains the clarity that is 
consistent with the modelling approach described thus 
far. 
Table 4 presents the derivation of the DCE stgroc 

and its corresponding event routines. As can be seen 
the table, the translation of a DCE into a object form 
generates a lot more executable code than its sequential 
counterpart. This becomes substantially greater when 
all the objects arc considered. Table 4 also lists the 
mechanisms used by the QRU protocol for JQ1. For 
e x a m p l e .  when  t h e  u p d a t e  m e s s a g e  
update(JQl,MQ,U,,) is received by MQ from JQ1, a 
mechanism is required to remove machine entities from 
the state of MQ and then to fabricate event messages to 
be subsequently passed on. This is summarised as 

SEND event (Event ,Source, Destination ,X,T) 

where X and T are the representative entity and time 
components of each member of the Update-set. 
Conditional events in the parallel simulation represent 

synchronisation points which cannot be avoided by 
using CMPs due to the requirement that the conditional 
tests are made with the object states at the same point 
in time. This prevents the asynchronous processing of 
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objects involved in the same DCE and limits 
parallelism to the simultaneous execution of objects 
successfully completing 
a conditional event. This is quite a serious limitation 
due to the f i e  grain nature of most objects encountered 
in a discrete event simulation. Using this basis it is 
possible to form partitions, groups of tightly coupled 
objects. When these are implemented in an efficient 
form, each partition will form one processing element. 
The four pattitions resulting from the model are shown 
in figure 2. 

stgroc: SEND query(stqroc,JQl,OQ); 
SEND query(stgroc.JQ1 ,MQ); 
WAIT reply(OQ,JQl,%& 
WAIT reply(MQ,JQ1,SMQ); 
WHILE test condition (stqroc) TRUE DO 

EXECUTE StJOc 
I* 
calculates the duration of the activity 
PROC and any affect that this has on the 
participant entities job, operator and 
machine 
*I 

ENDWHILE 
SEND update(JQl,OQ,U&; 
SEND update(JQ1 ,MQ,UMQ); 
WHILE entities left in U,,, DO 

ENDWHILE 
Table 4: Localised clement of distributed conditional 
event for JQ1 (srgmc) 

SEND event(JQ1 ,JQ2,job,T-) 

5: Multiple time distributions 

As illustrated in the discussion of conditional events, 
one or more event messages are sent if a conditional 
event is successful. The timestamp increment of these 
messages is dependent on the duration of the activity 
being modelled. 
Referring to the ACD, consider queue MQ. A 

machine entity resident in this queue can engage in 
either the activity REPR or the activity PROC. 

Depending on which activity the machine begins, the 
entity will arrive at the preceding queue (in this case 
MQ) at a time dependent on either of the time 
distributions of the auivities REPR or PROC. 
The implication of this to the parallel simulation is that 

the object representing the queue MQ will be capable 
of sending timestamped messages based on one of two 
time distributions. This means that event messages 
arriving at the proceeding object can appear to arrive 
in the wrong d e r .  
In the model decomposition phase of the methodology 

this observation is irrelevant as the LCC is in effect. 
However, when the LCC is removed and the CMP 
added, this effect can have dire consequences. For 
example, in conservative protocols the ordering 
constraint on a link is violated. 

6: Multiple event instigation 

Multiple event instigation (MEI) is a direct 
consequenw of DBEs and DCEs. Consider the 
execution of the DCE s tgmc  as instigated by a job 
arriving at JQ1. After the execution of this event the 
DBE endgmc will be scheduled; components of this 
event will arrive at JQ2, OQ and MQ. ie. 

event(endgrocJQ1 ,JQ2,job,Tcadgroc) 
event(endqrocJQ1 ,W,operatm.Td& 
event(endgrocJQ1 ,MQ,machine,T,& 

At JQ2 the event message will be processed at T and 
the state of the queue will be subsequently impeded. 
At MQ, the message will add machine to the state of 
MQ at T and instigate the LCE st-repr. This in turn 
will in tum instigate the DCE stgroc. Note that the 
time at which stgmc will OCCUT is T. At O(., on the 
processing of the message, operator will be added to 
the state of OQ and s tgmc  executed ako at T. This 
leads to stgmc being instigated at T mice. 
In the sequential model, the execution of endgmc 

will cause the activity PROC to begin for all sets of 
job, operator and machine in JQ1, OQ and MQ. 
Obviously, for the parallel simulation of the same 
model to be correct, the execution of the DBE 
endgmc must have the same effect. Clearly, this is 
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not the case; both OQ and MQ will instlgate the DCE 
stgroc simultaneously causing MEI to occur. 
The reason for ME1 taking place is this. A DBE 
occuts as a result of multiple classes taking part in the 
same activity. The entities which have taken part in 
this activity will therefore arrive at their respective 
pnxeeding queues simultaneously. When an entity 
arrives in a queue a test is triggered to determine if any 
of the activities proceeding the queue can begin; the 
conditional events marking the start of these activities 
are tested. If any of these activities involve multiple 
classes, then the corresponding conditional event will 
be a DCE. Clearly, in the parallel simulation model 
developed so far, v a  DBE is scheduled at two or more 
queues which then take part in the same DCE, then 
MEI will occur. This is also possible if activities exist 
with zero durations. 
MEI can be identified on an ACD by consideration of 

post-activity activity cycles. If two or more entities 
participating in an activity can subsequently arrive at a 
subsequent activity at the same time then a ME1 
situation will arise. This can be identified 
automatically. 

7: Conclusions 

This paper has suggested how a discrete event model 
based on an existing modelling technique can be 
translated into a form which can exploit the potential 
benefits of parallel simulation. These observations form 
the basis of a wider methodology to the composition of 
valid simulations executing on parallel computers. 
The use of techniques consistent with the conceptual 

frameworks used in the modelling technique is very 
important. This is because this form of simulation is 
aimed at the engineer, not the computer scientist. 
There already exist barriers to the use of simulation 
(perceived cost, investment of skills and resources for 
the future). It is hoped that the guidelines presented 
here to the use of parallelism within existing simulation 
techniques will not complement these problems, but 
add the benefits of speed up to a potentially beneficial 
technique. 

It was identified that within this domain, partitions will 
result due to the synchronisation consequences of 
distributed conditional events. This will have an 
unavoidable effect on parallelism. This indicates that 
if the physical system being simulated requires a great 
deal of global state testing, then the parallelism in the 
comesponding parallel simulation will be limited. 
The two problems inherent in the translation of this 

modelling technique were shown. One can be 
addressed at this stage, the other must be addressed 
during the addition of the CMP. 
Both conservative and optimistic CMPs have been 

implemented successfully [lo]. 
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